1,336 research outputs found

    Condensin II Promotes the Formation of Chromosome Territories by Inducing Axial Compaction of Polyploid Interphase Chromosomes

    Get PDF
    The eukaryotic nucleus is both spatially and functionally partitioned. This organization contributes to the maintenance, expression, and transmission of genetic information. Though our ability to probe the physical structure of the genome within the nucleus has improved substantially in recent years, relatively little is known about the factors that regulate its organization or the mechanisms through which specific organizational states are achieved. Here, we show that Drosophila melanogaster Condensin II induces axial compaction of interphase chromosomes, globally disrupts interchromosomal interactions, and promotes the dispersal of peri-centric heterochromatin. These Condensin II activities compartmentalize the nucleus into discrete chromosome territories and indicate commonalities in the mechanisms that regulate the spatial structure of the genome during mitosis and interphase

    Proteome-wide observation of the phenomenon of life on the edge of solubility.

    Get PDF
    To function effectively proteins must avoid aberrant aggregation, and hence they are expected to be expressed at concentrations safely below their solubility limits. By analyzing proteome-wide mass spectrometry data of Caenorhabditis elegans, however, we show that the levels of about three-quarters of the nearly 4,000 proteins analyzed in adult animals are close to their intrinsic solubility limits, indeed exceeding them by about 10% on average. We next asked how aging and functional self-assembly influence these solubility limits. We found that despite the fact that the total quantity of proteins within the cellular environment remains approximately constant during aging, protein aggregation sharply increases between days 6 and 12 of adulthood, after the worms have reproduced, as individual proteins lose their stoichiometric balances and the cellular machinery that maintains solubility undergoes functional decline. These findings reveal that these proteins are highly prone to undergoing concentration-dependent phase separation, which on aging is rationalized in a decrease of their effective solubilities, in particular for proteins associated with translation, growth, reproduction, and the chaperone system

    Uncovering placemaking needs with(in) a kindergarten community: a cross-disciplinary approach to participatory design

    Get PDF
    IntroductionThe design of early childhood education and care facilities faces the double challenge of creating a stimulating environment for young children and a supportive workplace for staff. The existing body of research suggests that placemaking strategies serve both requirements. A promising approach to meet placemaking needs is the participation of future occupants in the building design.MethodsWe pursued a participatory design study with the community of an Austrian kindergarten aiming to inform the future building renovation. We combined novel cultural fiction probes methods with conventional inquiry methods to gather information from children and teachers about their experience of the built environment. Using thematic and content analyzes we explored placemaking needs from different epistemic perspectives and converged findings through iterative exchange.ResultsReturns of children and teachers were interconnected and complementary. From a design-oriented perspective, children’s experience of place was relatable to spatial, temporo-spatial, and acoustic qualities as well as control needs. From a human-centered perspective, teachers’ experience of place was relatable to the needs of feeling embedded, protected, enacted, and socially connected. The converged findings revealed dynamic placemaking processes involving the elements of space, time, and control at different levels.DiscussionCross-disciplinary collaboration and research consolidation brought forth valuable insights on supportive structures for both children and teachers, facilitated timely knowledge transfer, and converted into design solutions that foster enacted placemaking. Albeit general transferability is limited, findings are interpretable within a solid framework of existing theories, concepts and evidence

    Efficient access to conjugated 4,4â€Č-bipyridinium oligomers using the Zincke reaction: Synthesis, spectroscopic and electrochemical properties

    Get PDF
    The cyclocondensation reaction between rigid, electron-rich aromatic diamines and 1,1â€Č-bis(2,4-dinitrophenyl)-4,4â€Č-bipyridinium (Zincke) salts has been harnessed to produce a series of conjugated oligomers containing up to twelve aromatic/heterocyclic residues. These oligomers exhibit discrete, multiple redox processes accompanied by dramatic changes in electronic absorption spectra

    SPSmart: adapting population based SNP genotype databases for fast and comprehensive web access

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the last five years large online resources of human variability have appeared, notably HapMap, Perlegen and the CEPH foundation. These databases of genotypes with population information act as catalogues of human diversity, and are widely used as reference sources for population genetics studies. Although many useful conclusions may be extracted by querying databases individually, the lack of flexibility for combining data from within and between each database does not allow the calculation of key population variability statistics.</p> <p>Results</p> <p>We have developed a novel tool for accessing and combining large-scale genomic databases of single nucleotide polymorphisms (SNPs) in widespread use in human population genetics: SPSmart (SNPs for Population Studies). A fast pipeline creates and maintains a data mart from the most commonly accessed databases of genotypes containing population information: data is mined, summarized into the standard statistical reference indices, and stored into a relational database that currently handles as many as 4 × 10<sup>9 </sup>genotypes and that can be easily extended to new database initiatives. We have also built a web interface to the data mart that allows the browsing of underlying data indexed by population and the combining of populations, allowing intuitive and straightforward comparison of population groups. All the information served is optimized for web display, and most of the computations are already pre-processed in the data mart to speed up the data browsing and any computational treatment requested.</p> <p>Conclusion</p> <p>In practice, SPSmart allows populations to be combined into user-defined groups, while multiple databases can be accessed and compared in a few simple steps from a single query. It performs the queries rapidly and gives straightforward graphical summaries of SNP population variability through visual inspection of allele frequencies outlined in standard pie-chart format. In addition, full numerical description of the data is output in statistical results panels that include common population genetics metrics such as heterozygosity, <it>Fst </it>and <it>In</it>.</p

    The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends.

    Get PDF
    Molecular chaperones contribute to the maintenance of cellular protein homoeostasis through assisting de novo protein folding and preventing amyloid formation. Chaperones of the Hsp70 family can further disaggregate otherwise irreversible aggregate species such as α-synuclein fibrils, which accumulate in Parkinson's disease. However, the mechanisms and kinetics of this key functionality are only partially understood. Here, we combine microfluidic measurements with chemical kinetics to study α-synuclein disaggregation. We show that Hsc70 together with its co-chaperones DnaJB1 and Apg2 can completely reverse α-synuclein aggregation back to its soluble monomeric state. This reaction proceeds through first-order kinetics where monomer units are removed directly from the fibril ends with little contribution from intermediate fibril fragmentation steps. These findings extend our mechanistic understanding of the role of chaperones in the suppression of amyloid proliferation and in aggregate clearance, and inform on possibilities and limitations of this strategy in the development of therapeutics against synucleinopathies

    ERIS: revitalising an adaptive optics instrument for the VLT

    Get PDF
    ERIS is an instrument that will both extend and enhance the fundamental diffraction limited imaging and spectroscopy capability for the VLT. It will replace two instruments that are now being maintained beyond their operational lifetimes, combine their functionality on a single focus, provide a new wavefront sensing module that makes use of the facility Adaptive Optics System, and considerably improve their performance. The instrument will be competitive with respect to JWST in several regimes, and has outstanding potential for studies of the Galactic Center, exoplanets, and high redshift galaxies. ERIS had its final design review in 2017, and is expected to be on sky in 2020. This contribution describes the instrument concept, outlines its expected performance, and highlights where it will most excel.Comment: 12 pages, Proc SPIE 10702 "Ground-Based and Airborne Instrumentation for Astronomy VII
    • 

    corecore